(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)

Rewrite Strategy: FULL

(1) CpxTrsToCpxRelTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to relative TRS where S is empty.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))
f(s(x), y) → f(x, s(x))
f(x, s(y)) → f(y, x)
f(x, y) → ack(x, y)
ack(s(x), y) → f(x, x)

S is empty.
Rewrite Strategy: FULL

(3) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
ack(s(s(x39_1)), 0) →+ ack(x39_1, ack(s(x39_1), 0))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x39_1 / s(x39_1)].
The result substitution is [ ].

(4) BOUNDS(n^1, INF)